Der Grundbegriff der Differentialrechnung ist die Ableitung einer Funktion. In geometrischer Sprache ist die Ableitung eine verallgemeinerte Steigung. Der geometrische Begriff Steigung ist ursprünglich nur für lineare Funktionen definiert, deren Funktionsgraph eine Gerade ist. Die Ableitung einer beliebigen Funktion an einer Stelle x0 definiert man als die Steigung der Tangenten im Punkt (x0;f(x0)) des Graphen von f. In arithmetischer Sprache gibt die Ableitung einer Funktion f für jedes x an, wie groß der lineare Anteil der Änderung von f(x) ist (die Änderung 1. Ordnung), wenn sich x um einen beliebig kleinen Betrag ?x ändert. Für die exakte Formulierung dieses Sachverhalts wird der Begriff Grenzwert (oder Limes) verwendet. Beispiel:
|
siehe auch Infinitesimalrechnung